Go to file
Zoé Cassiopée Gauthier 61e0520886 Pretty colors everywhere
2024-04-05 21:52:59 -04:00
src/pogo_scaled_estimators Pretty colors everywhere 2024-04-05 21:52:59 -04:00
.gitignore Cache raid simulations results instead of storing results in local database 2024-04-05 21:21:19 -04:00
.python-version Initial cut as a Python package 2024-03-29 22:00:02 -04:00
LICENSE Initial cut as a Python package 2024-03-29 22:00:02 -04:00
pyproject.toml Cache raid simulations results instead of storing results in local database 2024-04-05 21:21:19 -04:00
README.md Initial cut as a Python package 2024-03-29 22:00:02 -04:00

Pokémon GO Average Scaled Estimators

Installation

Once downloaded, this package can be installed locally in development mode:

pip install -e .

Usage

To run the simulations, choose your parameters such as attacker type, attacker level, and wether Party Power is active. Try to fill the stored results database with any of the following:

ase-cli --refresh POKEMON_TYPE_GRASS                    # Grass attackers. Defaults to level 40 and no Party Power.
ase-cli --refresh --level 30 POKEMON_TYPE_GRASS         # Level 30 Grass attackers, no Party Power.
ase-cli --refresh --party 2 POKEMON_TYPE_GRASS          # Level 40 Grass attackers, Party Power with two trainers.
ase-cli --refresh POKEMON_TYPE_DARK POKEMON_TYPE_GHOST  # Combined Dark and Ghost attackers.

Once the database contains the desired simulation results, display the average scaled estimators for attackers of the given type:

ase-cli POKEMON_TYPE_GRASS
ase-cli --level 30 POKEMON_TYPE_GRASS